|         | IRAS bias |                  | Gas&Dust | Dust evolution&environment | Dust origin | Summary&Prospect |
|---------|-----------|------------------|----------|----------------------------|-------------|------------------|
| 00<br>0 |           | 0000000<br>00000 |          | 0000<br>000                |             |                  |
|         |           |                  |          |                            |             |                  |

# Cold dust in galaxies near and far Observational results from SCUBA to Herschel and Planck

Chentao Yang

SFIG Group Activity, 2012-12-21

Cold dust in galaxies near and far, Chentao Yang

2011-12-21, SFIG Group Activity



Nearly 50% radiation information come from dust emission



Cosmic Infrared Background radiation: 50% dust emission. (Lagache+2005)



# SED of an ordinary galaxy - a model view



- Dust extinction & emission  $\Rightarrow$  Define the SED shape
- Galaxy metallicity⇒ Locked in dust content



# The Life cycle of interstellar dust

#### (credit:Mikako Matsuura)

#### Evolved stars



- ISM life-cycle: gas content, metallicity, ...
- Dust production, destruction and the origin (especially at high-z)?
- Galaxy evolution: dust play an important role!



#### How to study the dust content?

#### From its radiation! - Graybody emission



$$S_v = Q_{em}(\frac{v}{v_0})^{\beta} B(v, T)$$

- A modified planck function with Single temperature component
- Sensitive to  $T_d$  for  $S_v \propto T_d^{4+\beta} \Rightarrow$  some colder dust will easily be omitted



#### IRAS may miss a population of cold dust!



**BGS** Sample bias

Cold dust in galaxies near and far, Chentao Yang

2011-12-21, SFIG Group Activity



### IRAS may miss a population of cold dust!



- The measured 850  $\mu m$  luminosity function: solid dot
- Extrapolations of the 60  $\mu m$  luminosity function using fixed parameters
  - triangles:  $\beta = 2$ ,  $T_d = 24K$
  - diamonds:  $\beta = 1.5$ ,  $T_d = 38K$
  - circles:  $\beta = 1$ ,  $T_d = 45K$
- 60 µm sources are different from the submm-detected sources!
- Something must be missing!



# A possibility of two components model

#### Single component



#### Double components



#### Dunne, L.+2011

- $S_v = N_w \times v^\beta B(v, T_w) + N_C \times v^\beta B(v, T_c).$
- The distribution of β shifts to higher values, and there comes a very cold component.
- $60 \mu m$  by IRAS survey can not detected this.



# Is this model right?

#### A tight correlation was found between $450\,\mu m$ and $850\,\mu m$





#### Emissivity index- $\beta$ is the key to the question

#### Previous theory model works

- Mixture of silicate & graphite:  $\beta = 2$  (*Drane & Lee 1984*)
- A certain types of amorphous silicates: β > 1.5, depending on T<sub>d</sub> (Agladze+1996)
- Amorphous carbon:  $\beta \sim 1$ , graphitic grains:  $\beta = 2$  (*Mennella*+1995)

The results may differ with the dust material, environmental temperature, and so on.

#### Previous observations

•  $\beta \in [1.5, 2]$ , and 2 is better. (*Braine+1997; Alton+1998; Bianchi+1998; Fraguer+1999*)

This maybe in the large-scale of the dust around stars contribute little to the observation.

・ロト ・得ト ・ヨト ・ヨト

| Why dust<br>00<br>0 | IRAS bias | Cold grains<br>000€000<br>00000 | Gas&Dust | Dust evolution&environment | Dust origin | Summary&Prospect |
|---------------------|-----------|---------------------------------|----------|----------------------------|-------------|------------------|
| The exister         |           |                                 |          |                            |             |                  |

# Is this model right?

Fact

The theory tells us :

$$\frac{S_{450}}{S_{850}} = (\frac{v_{450}}{v_{850}})^{eta} imes rac{B(v_{450}, T_d)}{B(v_{850}, T_d)}$$

Deduction

The real  $\beta$  and  $T_d$  must have a small range.

#### Model Test

Then assume the two parameters to be a Gaussian or uniform distribution.

- 4 同 2 4 目 2 4 目 2

| Why dust<br>00<br>0 | IRAS bias      | Cold grains<br>0000●00<br>00000 | Gas&Dust | Dust evolution&environment | Dust origin | Summary&Prospect |
|---------------------|----------------|---------------------------------|----------|----------------------------|-------------|------------------|
| The exister         | nce of very co | old grains                      |          |                            |             |                  |

# $\mathsf{Cont'd}$

| Model            | $T_{ m w}$ (K)                 | $T_{\rm c}$ (K)              | β                             | $N_{\rm c}N_{\rm w}$ |
|------------------|--------------------------------|------------------------------|-------------------------------|----------------------|
| 1                | Uni 25–65                      | _                            | Uni 1–2                       | _                    |
| 2                | Gau $\mu = 35.7, \sigma = 5.3$ | _                            | Gau $\mu = 1.3, \sigma = 0.2$ | _                    |
| 3                | 0000 Uni 30-550000             | Gau $\mu = 20, \sigma = 2.5$ | 00000000002000000000          | Uni 1-100            |
| 4                | 0000 Uni 30-55 0000            | 000000018000000              | 00000000200000000             | Uni 1-100            |
| 5                | Uni 30–55                      | Uni 15–25                    | 1.5                           | Uni 1-100            |
| 6                | Uni 30-55                      | Gau $\mu = 20, \sigma = 2.5$ | Uni 1.5-2.0                   | Uni 1-100            |
| 7* <sup>CO</sup> | 0000 Uni 30-55 0000            | Gau $\mu = 20, \sigma = 2.5$ | 000000002000000000            | Uni 1-100            |

・ロト ・四ト ・ヨト ・ヨト

| Why dust<br>00<br>0               | IRAS bias | Cold grains<br>00000000<br>00000 | Gas&Dust | Dust evolution&environment | Dust origin | Summary&Prospect |  |  |  |
|-----------------------------------|-----------|----------------------------------|----------|----------------------------|-------------|------------------|--|--|--|
| The existence of very cold grains |           |                                  |          |                            |             |                  |  |  |  |

# $\beta = 2$ is preferred!

#### The test results, Dunne+2001

| (1)<br>Model     | (2)<br>Slope                                       | (3)<br>Int.              | (4)<br>$\sigma_{450/850}$    | (5)<br>$(S_{60}/S_{450})$ | (6)<br>KS      | (7)<br>$(S_{60}/S_{850})$ | (8)<br>KS      | (9)<br>$(S_{450}/S_{850})$ | (10)<br>KS    |
|------------------|----------------------------------------------------|--------------------------|------------------------------|---------------------------|----------------|---------------------------|----------------|----------------------------|---------------|
| Data             | $1.01\pm0.03$                                      | $-0.909 \pm 0.045$       | $1.6\substack{+0.42\\-0.24}$ | $13.9\pm2.1$              |                | $104\pm14$                |                | $7.90\pm0.26$              |               |
| 1                | $0.915 \\ 3.2\sigma$                               | $-0.684 \\ 5\sigma$      | 2.67<br>2.5e-4               | 64.6                      | 0.52<br>2.4e-9 | 574                       | 0.49<br>1.9e-8 | 8.13                       | 0.15<br>0.33  |
| 2                | $\begin{array}{c} 0.924 \\ 2.9\sigma \end{array}$  | -0.680<br>5.1 $\sigma$   | 2.01<br>0.079                | 12.9                      | 0.1<br>0.83    | 89.9                      | 0.13<br>0.51   | 6.80                       | 0.32<br>5e-4  |
| 3                | 0.993<br>$0.6\sigma$                               | $-0.910 \\ 0.02\sigma$   | 2.36<br>4.1e-3               | 14.6                      | 0.16<br>0.26   | 124.4                     | 0.09<br>0.89   | 8.72                       | 0.23<br>0.03  |
| 4                | $\begin{array}{c} 0.987 \\ 0.8 \sigma \end{array}$ | -0.881<br>$0.6\sigma$    | 2.22<br>0.0137               | 15.9                      | 0.18<br>0.18   | 133.2                     | 0.14<br>0.46   | 8.34                       | 0.17<br>0.23  |
| 5                | $0.992 \\ 0.6\sigma$                               | -0.774<br>$3.0\sigma$    | 1.73<br>0.521                | 5.5                       | 0.5<br>8.7e-9  | 34.2                      | 0.55<br>2e-10  | 6.32                       | 0.42<br>2e-6  |
| 6                | 0.970<br>$1.3\sigma$                               | $^{-0.808}_{-0.2\sigma}$ | 2.14<br>0.026                | 9.0                       | 0.33<br>4.3e-4 | 68.3                      | 0.33<br>5.7e-4 | 7.47                       | 0.20<br>0.089 |
| 7* <sup>CO</sup> | 0.992<br>0.6σ                                      | $-0.869 \\ 0.9\sigma$    | 2.15<br>0.022                | 14.5                      | 0.16<br>0.26   | 113.3                     | 0.13<br>0.56   | 7.92                       | 0.12<br>0.69  |

| Why dust<br>00<br>0 | IRAS bias      | Cold grains<br>000000●<br>00000 | Gas&Dust | Dust evolution&environment | Dust origin | Summary&Prospect |
|---------------------|----------------|---------------------------------|----------|----------------------------|-------------|------------------|
| The exister         | nce of very co | old grains                      |          |                            |             |                  |

Cont'd



Cold dust in galaxies near and far, Chentao Yang

2011-12-21, SFIG Group Activity

э



# Cold component temperature distribution

Single Gaussian distribution seems reasonable than a multi-peak





#### Observations support two components model

- Dust SEDs in most of the local galaxies detected by Planck prefer two components model. (Ade+2011)
- The gas to dust ratio using one component model predict a 2 times higher value than MW.(Dunne+2001, Vlahakis+2005)



| Why dust<br>00<br>0 | IRAS bias     | Cold grains<br>○○○○○○<br>○○●○○ | Gas&Dust | Dust evolution&environment | Dust origin | Summary&Prospect |
|---------------------|---------------|--------------------------------|----------|----------------------------|-------------|------------------|
| Observatio          | n evidence of | this model                     |          |                            |             |                  |

# Other support

- And there are some other individual observations support this scenario in different type of galaxies.
  - NGC 7331 (Alton+2001)
  - Late-type in Virgo cluster (Popescu+2002)
  - Planck detected Local Galaxies (Ade+2011)
  - ...

| Why dust<br>00<br>0 | IRAS bias     | Cold grains<br>○○○○○○<br>○○○●○ | Gas&Dust | Dust evolution&environment | Dust origin | Summary&Prospect |
|---------------------|---------------|--------------------------------|----------|----------------------------|-------------|------------------|
| Observatio          | n evidence of | this model                     |          |                            |             |                  |

# A recall of IRAS biased view

There may be a group of galaxies with faint  $60-\mu m$  flux and rich in cold dust which have strong submm emission being missed by IRAS

#### If using two components model...

It was found that the cold component has no correlation to the IRAS luminosity while the warm luminosity  $(M_d \times (N_w/N_c) \times T_w^6)$  has a strong correlation. (Dunne+2001)





# What's the heating sources?

- Warm: Strong star forming region, associated with molecular gas.
- Cold: Older stellar population ( $T_{eq} = ISRF^{1/5}$ ) and the OB star leaks, mostly associated with HI (atomic gas).
  - The active star-forming region may not be the reason of the varying temperature, because they are local and dusty



Cold dust in galaxies near and far, Chentao Yang

2011-12-21, SFIG Group Activity



#### The mass correlation between dust and gas

We can find a good spatial correlation along the major axis.



| Why dust<br>00<br>0 | IRAS bias | <b>Cold grains</b><br>0000000<br>00000 | Gas&Dust | Dust evolution&environment | Dust origin | Summary&Prospect |
|---------------------|-----------|----------------------------------------|----------|----------------------------|-------------|------------------|
|                     |           |                                        |          |                            |             |                  |

### Cont'd



**.** 



### Cold dust along the Hubble sequence





- The distributions of  $\beta$  and  $T_d$  fitted in single component model.
- The distributions and the median values of  $T_c$  and  $T_w$



#### Dust difference of various type of galaxies - Mass



Clements+2010



Rowlands+2011

#### Be careful:

Those are single temperature model! Lack of the mulit-component analysis



# Dust difference of various type of galaxies - Temperature



#### ULIRGS sample and SLUGS sample, Clements et al., 2010



Cold dust in galaxies near and far, Chentao Yang

#### 2011-12-21, SFIG Group Activity



# Dust difference of various type of galaxies - Temperature



| Why dust<br>00<br>0 | IRAS bias | <b>Cold grains</b><br>0000000<br>00000 | Gas&Dust | Dust evolution&environment<br>0000<br>000 | Dust origin | Summary&Prospect |
|---------------------|-----------|----------------------------------------|----------|-------------------------------------------|-------------|------------------|
| A cosmic e          | volution? |                                        |          |                                           |             |                  |

#### Luminosity-Temperature Plain



Ade+2011, new results from Planck.

Cold dust in galaxies near and far, Chentao Yang



#### $850 \mu m$ Luminosity Function



PSCz-extroploted:  $\alpha = -1.38$ ; OS+SLUGS:  $\alpha = -1.71$ ; SLUGS:  $\alpha = -2.18$ .



#### **Dust Mass Function**

There did exist dust mass evolution. And DMF can help us understand a lot!



Cold dust in galaxies near and far, Chentao Yang

2011-12-21, SFIG Group Activity

| <b>Why dust</b><br>00<br>0 | IRAS bias | <b>Cold grains</b><br>0000000<br>00000 | Gas&Dust | Dust evolution&environment<br>0000<br>000 | Dust origin | Summary&Prospect |
|----------------------------|-----------|----------------------------------------|----------|-------------------------------------------|-------------|------------------|
|                            |           |                                        |          |                                           |             |                  |

### How do the dust form?

- Budget crisis both in low and high-z:
  - Early-type galaxies (Rowlands+2011)
    - Cold dust is too much to be produced!
  - High-z SMGs (Michałowski+2010)

#### Its too early to form so much dust!

- Possible solutions:
  - Our SNe theory needs modified (controversial between observation and model: Matsuura+2011; Dunne+2003; Sibthorpe+2009)
  - top-heavy IMF (not enough)
  - grains growth in the ISM
  - inefficient destruction



# Summary

- A very cold dust component exists
  - two components model with  $\beta = 2$
  - cold dust is extended distributed
  - good dust and gas correlation
  - real situations may be much more complicated
- Cold dust exists in many kinds of galaxies, and we underestimated their amount
  - we face a dust budget crisis
  - there need more study on the dust origin at high-z and the process on dust destruction
- Previous view of the dust is biased by IRAS
  - Herschel(H-ATLAS, HerMES) and Planck(ERCSC) are doing surveys, more inspiring results are coming out!

| Why dust<br>00<br>0 | IRAS bias | <b>Cold grains</b><br>0000000<br>00000 | Gas&Dust | Dust evolution&environment | Dust origin | Summary&Prospect |
|---------------------|-----------|----------------------------------------|----------|----------------------------|-------------|------------------|
|                     |           |                                        |          |                            |             |                  |

#### Future Prospect

- Blind survey is needed with much larger samples!
  - Herschel & SCUBA-2
- We also need a more precise physical model of dust in galaxies, this model is still too simple!
  - Optical Thin, single-T(lack of data) graybody systematically overpredicts observed submm flux (Hayward+2011, use 3D simulation)
- Multiband view of galaxy SED study, using extinction information.

 Why dust
 IRAS bias
 Cold grains
 Gas&Dust
 Dust evolution&environment
 Dust origin
 Summary&Prospect

 00
 0000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 00000

# Thank you & Merry Xmas!



(in advance)

Cold dust in galaxies near and far, Chentao Yang

2011-12-21, SFIG Group Activity